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This study provides a novel patent-based analysis framework for identifying the latent knowledge structure of
technological domains by adopting dynamic perspectives. It uses patent data collected between 2010 and 2018
to systematically examine and visualize promising knowledge interactions that could foster the advancement of
solid-state battery technology. Moreover, solid-state battery technology is compared with lithium-ion battery
technology to demonstrate the difference in development focus. Based on different metrics and methodological
designs, the results indicate that solid-state batteries are an emerging field driven by the uptake of electric ve-
hicles. The results also reveal that a critical factor for desirable cell performance in lithium-based solid-state
batteries is improvement to electrode—electrolyte interface stability, while the most critical factor for lithium-ion
batteries is electrode materials. Additionally, materials, advanced manufacturing, battery engineering and
automotive sectors must work together to establish a dominant design and corresponding value chain. Moreover,
like with lithium-ion batteries, Asian manufacturers are dominating the patent space. The proposed framework is
expected to add a new empirical perspective to the discussion of sustainable technology development and
provide insight on innovation areas where key players can coordinate their activities to ramp up R&D operations.

1. Introduction

To accelerate the clean energy transition and to mitigate the impact
of climate change by reaching carbon neutrality by 2050, considerable
efforts are being made to increase the proportion of renewable energy
sources (Gielen et al., 2019). Leading tech-companies such as Apple,
General Motors, Google and LG have joined the global initiative, RE100,
which pushes the participating companies to switch to 100% renewable
electricity in business activities (Peirce, 2021). Accordingly, high
importance is attached to developing sophisticated energy storage so-
lutions to integrate more renewable energy sources into the electrical
grid (Argyrou et al., 2018). Effective use of energy storage systems can
contribute to higher renewable energy-penetration levels and the
decarbonization of electricity production (Arbabzadeh et al., 2019;
Hoang et al., 2021). Hence, the demand for sustainable, affordable and
high-performance electrical energy storage technologies has increased
considerably over the last decade (Acar, 2018). To reach the next
milestone in battery technology, a single battery chemistry will not be

able to satisfy the diverse facets of battery performance such as energy
density, safety, sustainability, cyclability and cost (Manthiram, 2017).
The battery systems designed to be the successors to lithium-ion batte-
ries (LIBs) and have the potential to meet the requirements of
energy-intensive products are referred to as post-lithium-ion batteries
(PLIBs) (Choi and Aurbach, 2016). Solid-state-batteries (SSBs) are a kind
of PLIB in which solid electrolytes are used instead of liquid electrolytes
(Chen et al., 2020). SSBs are attracting interest as a promising electro-
chemical energy storage technology to expand the battery capacity of
electric vehicles (EVs) (H. Shen et al., 2019).

Because the speed and scope of the research and development (R&D)
landscape are changing at a fast pace, it is crucial for researchers to be
aware of the key research streams that could accelerate the development
of next-generation batteries (Zeng et al., 2019). An understanding of the
R&D landscape can help create a clearer picture of the evolving char-
acteristics of technological innovations and assess the influence of spe-
cific knowledge interactions in the technical domain (Aaldering et al.,
2019a; Yuan and Li, 2021). In this regard, the analysis of patent
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information is indispensable for establishing sound innovation strategies
and discovering new development opportunities for scientists and R&D
managers. Patent data are regarded as one of the most important stan-
dardized technical resources because they reflect technological ad-
vancements and reveal the state of global technological collaboration
structures (de Paulo and Porto, 2018; Yin et al., 2020). Especially in the
early stages of technology development, patent-based metrics can play a
key role in delivering the intelligence required to innovate with confi-
dence (Fischer et al., 2020).

However, limited attention has been paid to exploring the techno-
logical development path of SSBs and their key technology nodes based
on objective technological profiling. A previous patent analysis did not
include SSBs in its investigation of the PLIB technological development
trajectory (Aaldering and Song, 2019). Other recent studies have
focused on the manufacturing compatibility of post-lithium-ion tech-
nologies with the existing lithium-ion production infrastructure (Duft-
ner et al., 2021) or the related challenges of key performance parameters
to achieve desired research outcomes (Randau et al., 2020). Moreover,
patent data in raw form are complex and require an appropriate analysis
framework. When combined with an appropriate analytical method, it is
possible to leverage the data and deliver some actionable insights. Thus,
this paper aims to identify and compare the patent landscape of SSBs
against that of LIBs using an exploratory research approach to provide
broad-scoped insights.

To this end, a novel patent-based analysis framework is proposed and
applied to generate an inclusive view of the technological development
path of SSBs and to compare their knowledge interaction pattern with
that of LIBs. This framework uses a modified patent co-classification
analysis to not only quantify interaction changes over time but also to
map out interacting knowledge areas that could be perceived as driving
forces for the advancement of SSB technology. While previous research
efforts have been geared towards creating a static snapshot of past
technology landscapes, the proposed framework is capable of repre-
senting how the interaction dynamics between co-occurring knowledge
areas have evolved and might shift in terms of significance over time.
The combination of static and dynamic perspectives is more suitable for
monitoring innovation-driven technology landscapes, and the inclusion
of direct and indirect interaction profiles via interaction analysis and
distance-based analysis can reveal a differentiated perspective on the
technological development trend.

In terms of its theoretical contributions, the proposed analysis
framework can help extend the currently available list of patent analysis
methods by offering an additional way of handling complex patent data.
Combined with other data-driven analytical methods (Aaldering et al.,
2019b; Baumann et al., 2021; Mejia and Kajikawa, 2020), this study can
enhance the overall transparency of post-lithium-ion battery research to
interested members of the scientific community. Moreover, its findings
confirm the emerging importance of SSBs in the adoption of EVs because
SSBs are regarded as a promising candidate for leveraging the limits of
conventional LIBs (Lee et al., 2020). This study also has important
practical contributions for both R&D planners and policy makers in the
field of environmental and sustainability research. It is a valuable
reference point capable of visualizing the ongoing R&D landscape,
guiding policy planning debates and improving the market perception of
scientists and R&D managers so that they can determine their optimal
portfolio mix. Furthermore, this study responds to the call for more
patent-based empirical research studying the direction of technological
development in PLIB technologies (Aaldering and Song, 2019).
Although SSBs have attracted considerable interest as potentially safe
and stable high-energy storage systems compared to the LIBs in
academia and industry (Balaish et al., 2021; Janek and Zeier, 2016), a
corresponding discussion on their technological progress in consider-
ation to underlying R&D activities is not available. Thus, this study can
help broaden the scholarly literature on the analysis of next-generation
energy storage systems using patent data. Additionally, the findings of
this study contribute to a complementary view of solid-state batteries,
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which might have a profound impact on the acceleration of the sus-
tainable development and deployment of clean energy and green
chemistry solutions.

The remainder of this paper is organized as follows: Following this
introduction, Section 2 briefly reviews the literature on the operating
principle of solid-state batteries and the significance of patent-based
trend analysis for monitoring the evolutionary trajectories of techno-
logical innovation. Section 3 outlines the data collection procedure and
the associated empirical methods. In Section 4, we present the empirical
findings by highlighting the different knowledge interaction patterns
between LIBs and SSBs. Conclusions and outlook for future research and
policy implications are summarized in Section 5.

2. Background
2.1. Significance of solid-state batteries

With a growing global energy consumption and government agendas
accelerating the transition to a zero-carbon economy, ensuring a high
penetration rate of renewable energy sources into the power grid is one
of the most important and challenging issues of our time (Chen et al.,
2019; Karunathilake et al., 2018). As a result, innovations in electro-
chemical energy storage devices, which store and release electricity on
demand, have gained considerable significance in establishing sustain-
able energy infrastructure. The effective use of energy storage systems
enables cleaner electricity to penetrate a wide range of applications,
including the areas of electric mobility and grid-scale storage (Hoang
et al., 2021).

Currently, LIBs are considered to be the most prominent type of
rechargeable battery and are well-established for various commercial
uses (Rallo et al., 2020). Since their introduction to the market in the
early 90s, LIBs have revolutionized modern society and the way our lives
work (Manthiram, 2020; Xie and Lu, 2020). LIBs have been the primary
power source choice for portable electronic devices. They also have been
integral to the successful market introduction and commercialization of
EVs due to their high energy densities and long-life span compared to
other rechargeable batteries (Placke et al., 2017). The main cell com-
ponents of a LIB are the cathode, the anode, the liquid electrolyte and
the separator, which spatially and electrically isolates the cathode from
the anode and allows ion permeability (Liu et al., 2020). Typical active
materials used for the cathode are layered transition metal oxides
(LiMO9, M = Ni, Mn, Co, Al) (Myung et al., 2017) whereas artificial and
natural graphite are widely used as the anode materials (Blomgren,
2017). To fully exploit the energy storage capabilities of LIBs, changes in
cell component materials and cell design are critical factors (Kwade
et al., 2018; Park et al., 2021; Wu et al., 2020; Zhang et al., 2021). In
particular, considerable attention has been given to improving electro-
lyte and electrode materials as they play a crucial role in affecting bat-
tery performance (Schmuch et al., 2018; Wang et al., 2020).

Despite the positive attributes of LIBs and their dominance in the
current market, there are concerns with their effectiveness, such as the
limited driving range of EVs, and safety (Sun, 2020). Further energy
density advancements are necessary to meet the ever-growing demand
for high-performance energy devices, but LIB technology is approaching
its theoretical performance limit (Grey and Hall, 2020). Only incre-
mental advances are expected in the near future due to the inherent
trade-off between reactivity and stability of materials at the electro-
lyte/electrode interface (Ge et al., 2020; Liu et al., 2019). Therefore,
designing batteries with improved safety, energy density, energy effi-
ciency and energy retention rates are necessary for the development of
next-generation energy storage technologies (Randau et al., 2020).

Based on this perceived necessity, research into PLIB technologies
has been triggered by substantial efforts to offer high-energy and long-
duration battery storage capabilities (Walter et al., 2020). Among
these PLIB technologies, SSBs represent a potential successor to LIBs
(Kim et al., 2021). This study focuses only on lithium-based SSBs (LSSBs)
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to enable a comparison with lithium-based battery technologies. In
Table 1, the key differences between LIBs and LSSBs are summarized.

Unlike LIBs, LSSBs rely on a solid electrolyte (Chen et al., 2020;
Janek and Zeier, 2016). This makes the production of safer batteries
possible due to the absence of highly flammable liquid electrolytes (Li
etal., 2018; Wu et al., 2021). LSSBs can demonstrate improved stability
and increased safety due to its solid structure as the electrolyte main-
tains its form even if it is damaged by an external impact and it cannot be
leaked upon temperature changes. Furthermore, the solid electrolyte
adopts the properties of a separator so it also serves as the separator in a
battery cell (Janek and Zeier, 2016). Hence, short-circuits caused by
lithium metal dendrite formation and growth from the anode through
the separator to the cathode can be suppressed (Famprikis et al., 2019).
LSSBs have more space for active materials and have increased energy
density per unit area providing improved packaging efficiency to battery
modules. Moreover, LSSBs enable the full potential of lithium metal
anodes, resulting in higher energy densities compared to conventional
LIBs (Wu et al., 2021; Yu et al., 2017). According to Lee et al. (2020),
their recent LSSB prototype based on a lithium metal anode would
enable an EV to travel up to 800 km on a single charge. Typically,
high-energy long-cycling SSBs are based on lithium metal anodes as they
have the potential to improve the energy density of the batteries through
their high theoretical specific capacity, safety and recyclability, and they
potentially have a lower cost compared to advanced Li-ion systems
(Albertus et al., 2021; Zeng et al., 2019). Currently, when considering
electrochemical performance in terms of energy efficiency, power and
cycle life, LSSBs are still quite far behind LIBs (Schmuch et al., 2018).
For example, additional research is needed to improve the ionic con-
ductivity of solid electrolytes and to optimize the interfacial stability
(Wu et al., 2021; Yu et al., 2017). Finally, the question of when LSSBs
will catch up to LIBs in terms of performance and cost also raises the
question of whether the technologies are moving in similar directions.
Hence, this study aims to provide more clarity to this question by
exploring the trajectory of interactions between the technology areas of
LSSBs and LIBs.

Table 1
Comparison of key features between LIBs and LSSBs (Adapted from Choi and
Aurbach (2016) and Duffner et al. (2021)).

Lithium-based solid-state-
batteries

Lithium-ion batteries

Characteristics Liquid electrolyte

Separator required

Solid electrolyte

Electrolyte acts as a separator
film

Higher energy density and

Advantages High technological

maturity safety with lithium metal
High volumetric energy Much wider viable range of
density working temperatures

Longer life span
Availability and costs of
selected materials
Environmental impact of
raw materials

Disadvantages Applied stack pressure to inhibit
delamination during cycling
Promising chemistries are
under investigation

Uncertain material and

processing costs

Nominal voltage 3.2-3.85V 3.7-3.8V

Operating voltage 3.0-4.2V 2.5-4.25 V (often above RT)
window

Areal electrode 3-5 mAh cm ™2 0.5-14 mAh ecm™?
capacity

1-20 kw kg ! 0.01-3 kW kg ! (temperature
dependent)

100-450 Wh kg !

Power (cell)

Gravimetric energy ~ 264-435 Wh kg ™!

density
Volumetric energy 733-1,200 Wh 17! 200-820 Wh 17!
density
Cycle life 1,000-6,000 100-1,000
Energy efficiency High (>90%) Low (50-76%)
Self-discharge Low Low
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2.2. Patent data as a unique source of information on technological
innovations

The pace of technological change has increased dramatically in the
last several decades with new sectors emerging and several others
converging (Stucki and Woerter, 2019). Technological development
trends have experienced an immediate acceleration and gain in signifi-
cance in a relatively short period of time. In this context, patents
represent a unique source of information on inventive activities and
their main technological features (Bregonje, 2005). Besides serving as
legal instruments to confer exclusive rights to an owner, patents illus-
trate a well-structured document that enables the exploration of various
analytical approaches to highlight technological progress (Clarke,
2018). In addition to the full technical description and claims of an in-
vention, patents contain a wide variety of metadata from which critical
patent metrics for making evidence-based business decisions can be
computed (Choi et al., 2020; Suominen etal., 2017). The prevailing view
is that 80 percent of the latest technical information can be found
exclusively in patent documents (Asche, 2017). Hence, patent data can
provide valuable insights by analyzing the competitive landscape,
assessing patentability and preparing freedom-to-operate opinions
(Holgersson and Wallin, 2017). Patent data have been widely accepted
as a standard approach for measuring innovation and technology trends.
In the field of technology and innovation management, the generation of
competitive intelligence using patents and monitoring the dynamics of
emerging technologies have been vital for supporting national R&D
policy planning and technology project selections (Stephan et al., 2019).
For example, scholars have adopted a series of different data-driven
approaches to capture the relative technological specialization (Shub-
bak, 2019), to identify emerging topics (Mejia and Kajikawa, 2020) and
to measure innovation cycles (Ahn and Yoon, 2020). In particular,
patent citation analysis provides a direct link to study the pattern of
knowledge development paths and spillovers (Lai et al., 2021), while the
co-occurrence of patent classification codes can be used to explore
converging technology areas (Feng et al., 2020). In several studies, the
use of international patent classification (IPC) codes has been high-
lighted as an effective means to analyze complex technological re-
lationships through co-classification-based analyses in combination
with the visualization of their relations as a network (Lim and Park,
2010). Patent co-classification analysis is a useful method for outlining
the intellectual structure of technological capabilities and measuring the
interdisciplinarity between disciplines at various technology levels
(Geum and Kim, 2020). Recently, co-classification analysis has been
adopted to help operationalize a patent’s bridging characteristic
(Moehrle and Frischkorn, 2021) as well as to derive technological
sub-domains by calculating technologically similar overlapping classes
(Mun et al., 2019). In addition to patent data, scientific publications
could also be considered as an indicator for technical change (Spreafico
and Russo, 2021). However, patent data are appropriate data for
revealing the development and status of technological progress with a
strong link to practical applications while scientific publications cover
basic research that has no proven usage cases for monetization (Huang
et al., 2012). Moreover, scientific publications offer a smaller variety of
metadata, which limit the options for technology trend analysis. Hence,
this study considers patent data as a suitable option to investigate
technological development and interconnectedness.

3. Methods

The proposed analysis framework consists of four analysis steps
(Fig. 1). It builds on the co-classification-based approach to characterize
the technological development of LSSB, enabling an in-depth analysis of
the underlying knowledge interaction pattern. After giving an intro-
ductory overview of this framework, each step will be explained in a
more detailed fashion.

In the first step, the raw patent data were collected and pre-processed
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Data collection and pre-processing

Static view

Construction of a knowledge co-occurrence matrix and network

Dynamic view *

Application of knowledge interaction analysis
Uncovering emerging interaction trends

1) Growth
Calculation of metrics 2) Persistence

3) Novelty

v

Application of distance-based analysis
Visualizing the knowledge relatedness using a
distance map

Distance analysis using Tanimoto coefficient

Fig. 1. Overview of the proposed analysis framework.

to remove noisy data and transform them into a suitable format for
further analysis (see Subsection 3.1). The second step involves the
construction of the co-occurrence matrix from a static view and the
corresponding interaction network to visualize the interrelation of
technological knowledge areas (see Subsection 3.2). The subsequent
steps capture the interaction dynamics of technological knowledge areas
by analyzing the variation in interaction rate over defined time in-
tervals. The applied knowledge interaction analysis reveals the evolving
dynamics of direct interactions. Three metrics were introduced to
quantify the intensity and significance of the direct relationships be-
tween interacting pairs of knowledge areas. This is especially suitable
for identifying emerging, persistent and relevance-gaining interactions,
thereby measuring the direct impact of knowledge areas on the R&D
landscape (see Subsection 3.3). The applied distance-based analysis
computes the relative proximity between knowledge areas, thereby
revealing the possible influence of knowledge areas on the progress of
underlying technological fields (see Subsection 3.4). In contrast to the
interaction analysis, the distance-based analysis evaluates the indirect
relationship between distinct knowledge areas based on their shared set
of knowledge areas. Hence, the focus in the latter method considers the
dynamics of whole interaction profile of knowledge areas while the
former method only considers the direct relational link. As a result, these
distinct perspectives give the opportunity for different contextual in-
terpretations of the technological environment. This is because knowl-
edge areas with a strong direct relationship can appear rather distant
from each other when considering the whole interaction profile. Such
relationships could pave a new way for detecting vacant technology
development opportunities as the distance-based analysis also considers
the surrounding environment in which a technology is embedded.

3.1. Data collection and pre-processing

We extracted the relevant patent data from the Derwent Innovations
Index (DII), which represents an aggregate database of over 80 million
individual patent documents drawn from 59 patent-issuing authorities
worldwide. The patent data from DII are organized in patent families
where each patent family is grouped around a priority patent that refers
to the same basic invention. Hence, a patent family is a set of patents
filed with different patenting authorities along with continuations or
divisions linked by a common priority. This feature is particularly
helpful in finding a comprehensive view of the global patent landscape
because duplicated records can be filtered out for the patent analytics.
Moreover, DII adds valuable metadata, such as Derwent Manual Codes
(DMC) or DWPI Abstracts, abstracts rewritten in plain English without
the inclusion of complex legal jargon, to the patent record providing
access to curated and enriched patent data sources (See Section 3.4 for

further explanation on DMC).

Although a keyword-based patent search is the most widely adopted
means of identifying patents, it has two limitations. First, there is a risk
of retrieving irrelevant patents to the interested technology domain if
there is insufficient expertise on the research subject. Second, there is a
lack of proper key terms for emerging technological domains to detect
all relevant patents. Hence, in this study, patent retrieval was done by
selecting suitable cooperative patent classification (CPC) codes for
LSSBs and LIBs (Table 2). The classification-based search query was
partly adopted from the work of Aaldering et al. (2019a) and [EA (2020),
which relied on patent classification codes for patent retrieval and
defined the characteristic CPC codes for LIB and LSSB technologies.
Similar to the IPC scheme, CPC is an extended classification system
based on hierarchical structures that categorizes patent documents
based on their technical field of invention. With more than 250,000
subdivisions, CPC is designed to harmonize the global classification
system for patent documents and provide the granularity needed to
cover and classify the details of patent content (Table 3). To capture the
relevant patents, Boolean operators such as “AND” and “OR” were
combined to specify the queries. For example, the query for LSSB was
designed by extending the base classification codes for LIB (which
consist of CPC=(H01M0010052 OR HO1M00100525 OR Y02E0060122
OR Y02T00107011)) with the representative code “HO1M-10/0562”
(Lithium-accumulators — Electrolyte — Solid materials) for LSSB. The
patent retrieval took place in March 2021.

The analysis time frame was from 2010 onwards to capture the latest
developments. The R&D activity of LSSB remained low compared to LIBs
until now because LIBs have achieved remarkable energy densities in
recent decades. Therefore, setting the starting year to 2010 permits
better comparability between the considered technologies. Lastly, the
collected data were preprocessed and stored in a well-defined format to
facilitate further analytical processing.

Table 2
Patent search query. (PRDS: Priority date, CPC: CPC codes.)

Technology domain Search query

Lithium-based solid- CPC=((HO1M0010052 OR HO1M00100525 OR
Y02E0060122 OR Y02T00107011) AND
(H01M00100562)) AND PRDS>=(20100101);
CPC=(H01M0010052 OR HO1M00100525 OR
Y02E0060122 OR Y02T00107011 OR HO1M0004013)

AND PRDS>=(20100101);

state batteries

Lithium-ion batteries
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Table 3

Definition of CPC codes. (Note: The CPC scheme is updated regularly to keep in
line with the latest filing trends and technology advances. Therefore, some CPC
codes are present in the documents, but are not actively used anymore to
improve patent searching.)

CPC Description

HO1M-10/ Lithium-accumulators with non-aqueous electrolyte
052

HO1M-10/ Lithium-accumulators - Rocking-chair batteries, i.e. batteries with
0525 lithium insertion or intercalation in both electrodes; Lithium-ion

batteries

HO1M-10/ Lithium-accumulators — Electrolyte — Solid materials
0562

HO1M-04/ Electrodes for lithium-accumulators
013

YO02E-60/ Lithium-ion battery technologies with an indirect contribution to
122 GHG emissions mitigation

Y02T-10/ Lithium-ion battery technologies related to road transport of goods
7011 or passengers

3.2. Construction of co-occurrence matrix and technological knowledge
interaction network

In this step, a co-classification approach was applied to investigate
the interconnectedness of the LSSB and LIB knowledge areas. The co-
classification approach measures the co-occurrence of distinct classifi-
cation codes assigned to individual patents (Karvonen and Klemola,
2019; Park and Yoon, 2017). Depending on the nature of a patented
invention, various patent classification codes can be simultaneously
assigned to a patent document. As each code can denote a specialized
technological knowledge area, the presence of multiple classification
codes indicates a dependency between these codes (Song et al., 2017).
This dependency is assumed to produce knowledge flows or knowledge
spillovers among technology areas. Hence, both obvious and
non-obvious patterns of knowledge interactions can be revealed by
looking at their degree of connectedness. (Note: In this study, a
knowledge area is equivalent to a classification code according to the
DMC indexing system). DMC are used to create the co-occurrence ma-
trix. DMC are an alpha-numeric classification scheme designed by ex-
perts at Clarivate Analytic and are broadly used to categorize patents in
21 subject areas related to “Chemical”, “Engineering”, and “Electronic
and Electrical Engineering”. The DMC classification system represents a
customized taxonomy indicating the novel technical aspects of an in-
vention and has a hierarchical indexing system, where the addition of an
extra letter or number denotes moving down the hierarchy and speci-
ficity (Table 4). Past research has shown that the use of DMC was helpful
in revealing the detailed aspects of a technological area covered by a
patent (Aaldering and Song, 2019; Li et al., 2021; Wei et al., 2017).

The resulting co-occurrence matrix was then used as the input for the
construction of a corresponding knowledge interaction network (Fig. 2).
The network visualization of the interacting knowledge areas helps
highlight different relational aspects around a single node, which are
otherwise difficult to examine using a matrix illustration. Information
visualization in business is a crucial component for making sense of
complex systems and generating insights on high-dimensional data
(Basole, 2019). Network visualization is a specific area in the field of

Table 4
Exemplary illustration of the hierarchical structure of DMC system.
Hierarchy DMC Explanation
Section X Electric Power Engineering
Class X16 Electrochemical storage
Group X16-B Rechargeable or secondary cells

Subgroup - main X16-B01 Cells

Subgroup — lower level (I) X16-BO1F Non-aqueous cells
Subgroup — lower level (II) X16-BO1F1 Lithium-based
Subgroup — lower level (III) X16-BO1F1C Solid electrolyte
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information visualization. In a network, each node denotes a techno-
logical knowledge area and each link specifies the degree of interaction
between a pair of technological knowledge areas. Previous studies have
shown that a network analytic perspective provides a particular lens for
quantitatively measuring the degree of connectivity between diverse
disciplines and categorizing the strategic positioning of sectors within
the ecosystem network (Aaldering et al., 2018; Basole, 2016; Basole
et al., 2019). Furthermore, the calculation of quantitative network
measures can enhance the understanding of the internal structure of the
network. Among the various modes of measuring network characteris-
tics, centrality-based metrics are commonly used to measure the degree
of interconnection and influence of nodes in the network (Wang, 2020).

To rank the relative importance of nodes and examine their roles in
information exchange, we considered betweenness, closeness and
eigenvector centrality measures. Betweenness centrality indicates the
extent to which a node is positioned on the shortest geodesic path be-
tween other pairs of nodes in the network (Leydesdorff, 2007). Hence, it
is a measure of bridging others and serves as a control point of in-
teractions. A node with high betweenness centrality is different from
having many direct contacts and is about being in between a node that
tries to reach another node. It reflects the intermediary location between
indirectly tied pairs of nodes. The betweenness centrality of a node Cg(i)
can be calculated as follows:

Gi=3" ij”’ﬁ—i”#j#k e))
1 j=1 &

k=

where gj (i) describes the number of shortest paths between a pair of
nodes j and k that pass through node i and gj. represents the total number
of shortest paths between nodes j and k.

Closeness centrality represents the average distance of one node to
all other nodes in the network by measuring its summed lengths of
shortest paths to other nodes (Freeman, 1978). It explains a node’s
ability to reach many other nodes by traversing relatively small dis-
tances. A node with high closeness centrality can easily contact all other
nodes within the network due to its strong proximity. Thus, closeness
centrality explains a node’s ability to access or absorb information from
one node to another nearby node, resulting in a high degree of indirect
influence on other nodes. The closeness centrality of a node C¢(i) can be
calculated as follows:

N -1

- Ydy

Ce(i) (2)

where d; describes the shortest path between the considered node i and
another node j. N stands for the number of reachable nodes.

Eigenvector centrality indicates the degree to which a node is con-
nected to other central nodes in the network (Basole, 2016). It captures
the direct and indirect relational connectivity because the influence of a
node is determined by the number and influence of its adjacent nodes.
This metric enables assessment of how prominent a node is. In this study,
a classification code with high eigenvector centrality is connected to
many other codes, which are themselves connected to many other
prominent codes. The eigenvector centrality of a node Cg(i) can be
calculated as follows:

Culi) =5 D A ®
J=1

where Aj; represents the network’s adjacency matrix, n is the total
number of nodes in the network, x; is the relative centrality score and 4 is
the corresponding eigenvalue (Bonacich, 2007). Hence, Cg(i) is the
summation of its neighbor’s centralities. By considering these centrality
metrics, this study aims to detect key knowledge areas exerting a sig-
nificant influence on the development of LSSBs and LIBs. This will allow
for new insights into the functional roles played through specific
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Patent data Co-occurrence matrix Knowledge interaction network
DMC1
Patent 1 DMC1, DMC2, DMC3 DMC1 | DMC2 | DMC3 | DMC4 | DMCS5 o)
DMC1 | - 1 1 1 0
Patent2 DMC1, DMC4 DMC2 | 1 g 2 1 1 - ol
DMC3 | 1 2 - 1 1
Patent 3 DMC2, DMC3, DMC4, DMC4 1 1 - 1
DMC5 omcs| o | 1 | 1 | 1 | - O
DMC3  DMC4

Fig. 2. Conceptual process of computing the co-occurrence matrix and the transformation into a knowledge interaction network.

knowledge areas.

3.3. Dynamics of interacting knowledge areas

While the previous step was oriented towards the description of the
interaction network and its node properties from a static perspective, it
is of equal importance to identify the emerging and ever-evolving
interacting pairs of knowledge areas from a dynamic point of view.
This is especially true if the underlying technology landscape is in a
constant state of flux. To highlight the interacting pairs of knowledge
areas with promising potential, we proposed an integrated procedure,
which includes the introduction of three new metrics. For this purpose,
the interval-specific co-occurrence matrices were constructed to track
the variation in interaction rate over different time intervals. Here, the
frequency of interactions has been normalized by the number of patents
in each time period to ensure comparability. The resulting proportional
interaction frequency is defined as follows:

frEq(x,y)/'
num_pat;

]7r()]7—fr(3(I(x,y),' = (4)

where freq(x,y) indicates the absolute number of interaction frequencies
of an interaction pair (x,y), j denotes the corresponding interval and
num_pat stands for the number of patents. The most promising interac-
tion pairs were identified by considering the metrics of growth, persis-
tence and novelty.

Growth measures the change in the interaction rate between two
interacting knowledge areas over the examined intervals. Growthyy) is
dependent on the proportional interaction frequency and can be defined
as follows:

2018
Growth(w) = Z

j=2010

(propfreq(w),- — propfreq(w),-]) (5)

According to Equation (5), Growth(y,y) is the sum of all proportional
interaction frequency differences between period j and j-1. Hence,
growth is useful for highlighting the interacting knowledge areas that
received more attention from the R&D community considering a dy-
namic perspective. To ensure that a significant growth is due to a
consistent R&D performance, the evaluation metric of persistence is
considered. Persistence(y,y) analyzes whether a certain interaction has
been continuously manifested and can be defined as follows:

2018

Persistence = if Jfrequy) >0 =6
j=2013

2018
No persistence = if ( Z (freq(”),- > O) # 6)
j=2013

According to Equation (6), Persistence(yy) is the sum of the

interaction presence appearing in the last six years of the considered
study period. This metric is helpful in stressing the interacting pairs that
are sustained over time and is a useful feature for separating a trend
from a fad.

The last metric novelty is capable of highlighting the interacting
pairs that have experienced significant growth in the most recent year,
thus demonstrating a high potential for future relevance. Novelty y,y) can
be calculated with the following formula and is represented as a
percentage:

; g:opifreq(x,yn 100
Z,-:zm 3Prop-freqyy);

Novelty,.,) = ( 7)

where k is equal to the most recent period. Noveltyy,y) can be determined
by setting a cut-off value. In this study, the cut-off value was set to 25%.
Based on the proposed metrics, it is possible to offer further insights into
which interacting pairs have contributed to the growth of the underlying
technological fields and to filter out the promising pairs.

3.4. Calculation of a distance metric

In this step, distance-based measurements were applied to quantify
the relationship between two distinct knowledge areas. While the pre-
ceding analysis revealed the emerging trends by looking at the direct
linkages, a distance-based analysis is capable of establishing references
between knowledge areas through common intersections. For example,
the distance measurement via computing proximity in high-dimensional
data can take place by considering the ratio of the intersecting set of
knowledge areas. To this end, an adapted co-occurrence matrix was
relied upon to examine how closely two different knowledge areas are
related. This matrix provides additional insights into the degree of
similarity between distinct knowledge areas. The corresponding con-
ceptual process is depicted in Fig. 3.

To ensure a comprehensive overview of the most relevant de-
velopments and to avoid sparse matrix handling, only the top 50
frequently occurring knowledge areas are included in the matrix.
Moreover, the analysis period was divided into three equal time in-
tervals to study the evolutionary change in growing or decaying simi-
larity between knowledge areas. Accordingly, the adapted co-
occurrence matrices are generated and the distances are calculated
using the Tanimoto coefficient, which is based on pairwise similarity
measures (Cha, 2007; Ertl, 2020). The distance dq;,; can be calculated as
follows:

S max(x;y;) — min(x;y;)

diani =1 — 7
! > iimax (x;y;)

where x and y represent the distinct knowledge areas, i describes the
index position within the row vector of the matrix and n stands for the
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Top 50 knowledge areas

Adapted co-occurrence matrix
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Knowledge distance map

Rank DMC Occurrence
DMCA | DMCB DMCZ

1 DMC A 832
DMC A - 12

DMC B 563
DMC B 6 9

3 DMC C 456
DMC Z 12 -

50 DMC Z 156

Fig. 3. Conceptual procedure for performing the distance analysis.

lengths of the matrix. The distance values can range from O to 1. A value
of 0 states that the two knowledge areas are indistinguishable whereas a
value of 1 indicates that the two knowledge areas do not share any
common interactions. Finally, the results are visualized as a heat map
that uses color intensities to reflect the degree of varying distance for
each interval.

4. Results and discussion
4.1. Descriptive statistics

This subsection provides a descriptive overview of the key charac-
teristics of the collected patent data. Fig. 4 shows the number of LSSB
patent families by priority year between 2010 and 2020. In total, 3164
patent families were identified for this time frame after the initial pre-
processing. In the initial pre-processing step, patent documents were
excluded if they did not have information on the priority date or Der-
went Manual Codes because these are essential features for conducting
the analysis. The number of patent families in the field of LSSB has
steadily grown until 2018. According to a recent technology report by
the International Energy Agency (IEA), patent filing activities in batte-
ries and other electricity storage technologies grew at an average annual
rate of 14% worldwide from 2008 to 2018 (IEA, 2020). This number is
four times higher than the average patent filing rate in other technology
fields. A similar growth rate can be witnessed in this study’s data. The
sudden drop in the number of patent families after 2018 can be
explained by the fact that the patent applications are usually published
with a delay of 18 months after the priority date in most patent offices.
Subsequently, this could create a false impression of declining research
productivity although the actual number of patents for the years 2019
and 2020 would be higher. Hence, this study considers only the time
interval between 2010 and 2018 to avoid possible bias in interpreting

607
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Number of patent families
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Fig. 4. Historical patent development trend sorted by priority year (LSSB).

the results and to ensure comparability over time. Ultimately, 2669
patent families are included in the subsequent analysis steps. In the case
of LIBs, 63198 patent families remained for further analysis after
pre-processing. Table 5 provides a summary of these data.

Interestingly, the development pattern of LSSBs shown in Fig. 4 is in
contrast to the patent development trend of LIBs, which is characterized
by stagnant growth (Fig. 5). This contrast could indicate that LSSBs show
promise for advancing EV development as they are capable of tackling
issues related to performance, safety and costs (Lim et al., 2020).

A brief overview of the most prominent classification codes for LSSB
is illustrated in Fig. 6. The data set contains 1459 different classification
codes with varying degrees of prominence. Compared to other preceding
studies, the classification codes were analyzed at their most detailed
hierarchy level to provide a comprehensive overview about the under-
lying technological trajectory. The high number of individual codes
shows how diversified the LSSB technology area is.

The first three most common classification codes “L03-E01C3” (Solid
electrolytes), “X16-B01F1C” (Lithium-based solid electrolyte) and “L03-
E01B5B” (Lithium electrodes) represent essential parts of LSSBs (Note: A
more detailed explanation of individual codes can be downloaded as a
supplementary file. Moreover, the readers can look up the description of
codes individually by accessing the following website: https://clarivate.
com/derwent/dwpi-reference-center/mel/.). These are classification
codes related to solid-state battery cell components and their production
processes. Apart from them, another cluster of classification codes were
identified that underscore the potential of LSSBs for the electric vehicle
market and moving towards clean mobility. For example, “L03-H05”
(Vehicles) represents the fourth most frequently occurring classification
code. The assumption that LSSBs could become the new standard for EVs
is strengthened by the presence of “X21-B01A” (Traction Battery) and
“X21-A01F” (Electric vehicles). Furthermore, the code “L03-HO3A”
(Data storage units, computers) indicates the potential application of
LSSBs as a solution for wearable and portable electronics (Yadav et al.,
2019). The remaining classification codes refer to the advancement of
electrodes, which are usually made up of active materials, conductive
additives and binders. The strong focus on these components seems
plausible because the energy density is largely dependent on the active
material loading in the composite electrode (Shi et al., 2020).

Next, the geographical distribution of patents by country of origin

Table 5
Number of collected patents for LSSBs and LIBs after first and second pre-
processing.

Technology domain

Number of patent
families after initial
pre-processing

Number of patent families after
second pre-processing (limiting
the time interval)

Lithium-based solid-
state batteries
(LSSB)

Lithium-ion batteries
(LIB)

3164

72900

2669

63198
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100004 5615 was examined. The breakdown by country is shown in Fig. 7 where the
9007 intensity of the color spectrum is proportional to the number of priority

patents. The related R&D activities are concentrated in a few geographic

80007 7572 areas with the majority of the patents originating from Japan, USA,

South Korea and China, which rank high on the international intellec-
tual property (IP) filling activity list (WIPO, 2020).

The analysis shows that Japan (Count: 1030) has filed by far the most
patent applications, making it the dominant country for LSSB technol-
3547 ogies, followed by United States (Count: 597), South Korea (Count:408)
and China (Count: 290). The high focus of R&D in these countries can be
explained by their expertise in LIB production and related operations
(Golembiewski et al., 2015) as well as government policies pushing the
EV market globally into the mainstream (Kapustin and Grushevenko,
2020). In this context, leading Japanese manufacturers have teamed up
with the government in a program to develop SSBs. For example, the
consortium, Lithium Ion Battery Technology and Evaluation Center
(LIBTEC), aims to set global standards for SSBs by being first to
commercialize the technology and to develop an SSB that doubles the

6390
6000

4000

Number of patent families

20004

T T T T T
S g P g 9 0 e e S
Priority Year

Fig. 5. Historical patent development trend sorted by priority year (LIB).
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Fig. 7. Geographic distribution of patent families by country of origin (LSSB).



A. Block and C.H. Song

range of EVs from 400 km to 800 km (Bindra, 2020). From a
manufacturing perspective, LSSBs can be industrialized in a similar way
to conventional LIBs by driving down the processing costs with addi-
tional manufacturing competencies regarding the fabrication of a solid
electrolyte separator layer and the integration of a lithium metal anode
(Schnell et al., 2018).

Next, the patent assignee information was analyzed at the organi-
zational level to gain further insight into patent ownership. Fig. 8 reveals
the top 20 patent-holding organizations out of the 715 distinct patent
holders operating in the public and private sectors. To clarify patent
ownership, we relied on Optimized Assignee, which provides a
normalized company name by considering the latest reassignment and
company hierarchy.

The results show that Toyota Motor Corporation holds by far the
most patents, followed by well-known companies such as Panasonic,
Bosch and LG. It is interesting to note that automobile manufacturers,
such as Toyota and Hyundai Motor, conventional battery manufac-
turers, such as Panasonic, LG Chemistry and Samsung Electronics, and
hardware manufacturers, such as Murata Manufacturing and IBM, are
involved in speeding up the industrial production of LSSBs. This could
indicate that knowledge sharing between the automotive, battery, and
materials manufacturers is crucial. The relevant actors from LIBs are
turning their attention towards the development of LSSBs (Bindra,
2020). Although no established value chain for LSSBs exists to date, the
value chain of conventional LIBs may serve as a guide to better coor-
dinate the actions of key players (European Commission, 2021). The
relatively high presence of academic institutions, such as Chinese
Academy of Science and Ulsan National Institute of Science & Tech-
nology, indicates the necessity of collaborative R&D efforts to overcome
processing issues for solid composite electrolytes as well as to upscale
manufacturing capacities for batteries (European Commission, 2021).
As EV makers remain the key drivers behind the development of LSSBs,
the overall design of the supply chain for LSSBs could depend on their
requirements and the potential to set up an integrated ecosystem around
materials, advanced manufacturing, battery engineering and the auto-
motive sectors.

4.2. Visualization of technological knowledge interaction network

A co-classification approach was adopted to delve deeper into the
underlying technological interrelations of the knowledge areas. The
analysis of co-occurring patent classification codes is a useful method for

TOYOTA MOTOR CORP

PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD
BOSCH (ROBERT) GMBH

FUJI FILM HOLDINGS CORP

MURATA MANUFACTURING CO. LTD

LG CHEM LTD,

SAMSUNG ELECTRONICS CO LTD

QUANTUMSCAPE CORP

INTERNATIONAL BUSINESS MACHINLS CORP

CHINESE ACADEMY OF SCIENCE -
SEIKO EPSON CORPORATION
HYUNDAI MOTOR CO.+
KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
IDEMITSU KOSAN CO, LTD. A

Number of patent families

NGK INSULATORS LTD. -

MITSUI MINING & SMELTING CO. LTD.

ULSAN NATIONAL INSTITUTE OF SCIENCE & TECHNOLOGY -
HITACHI LTD

SHOWA DENKO K. K. 4

TDK CORPORATION |
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quantifying the strength of knowledge relationships and spillovers
(Aaldering and Song, 2019). While the exploitation of citation infor-
mation (i.e. studying technological follow-up relations among patents)
can help trace the knowledge diffusion pattern at an individual patent
level (Jiang et al., 2020), the approach adopted here aims to provide a
bird’s-eye view of the knowledge linkages at a detailed technology level.
To this end, the constructed co-occurrence matrix was converted into a
network graph object. The resulting knowledge interaction network is
outlined in Fig. 9, whereby each node refers to a specific knowledge area
and each link indicates the interaction dynamics between a connected
pair of technological knowledge areas. To provide a more thorough
picture of the knowledge distributions and interaction patterns, the
lowest DMC index level was used for representation. This holistic
perspective enables a more comprehensive examination of the patterns
of knowledge interaction dynamics, and is capable of highlighting
interdisciplinary knowledge structures. To highlight the evolving nature
of the technological landscape, the analysis period was divided into
three equal time intervals (2010-2012; 2013-2015; 2016-2018) to
better capture the evolution trend of LSSB innovation. However, due to
the high degree of interconnectedness, a threshold-value had to be set to
reduce the complexity of network visualization (Note: To obtain a better
view on the node connections, readers can download the source file from
the journal’s website.). A threshold-value of 5% was selected, indicating
that only the top 5% of the most frequent interactions are highlighted to
keep the complexity to a manageable level. The interaction strength
between two knowledge areas is proportional to the edge weight within
the network.

The network development for LSSBs over time in Fig. 9 shows that
both the number of knowledge areas and the number of interactions
increased significantly over time. This observation is supported by the
calculated network properties shown in Table 6 and it implies that the
knowledge scope and depth of LSSB technologies have continuously
expanded. The interaction network was visualized with the
Fruchterman-Reingold layout, which is a force-directed algorithm. It
positions the more strongly connected sets of nodes together by mini-
mizing the topological distance between them (Fruchterman and Rein-
gold, 1991). Hence, highly connected nodes are clustered close to the
center. The decreasing network density over time further indicates that
the interaction dynamics are mainly concentrated in a few core
knowledge areas and the knowledge does not transmit efficiently across
all nodes. Interestingly, the opposite pattern was observed in LIBs
(Fig. 10).

N

*® P P P D P

Assignee

Fig. 8. Distribution of top 20 assignees for LSSB (Optimized assignee).
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Table 6
Network properties of LSSB over time.

Interval 1  Interval 2  Interval 3  All intervals
Number of interacting 532 756 1103 1449
nodes
Number of edges 10589 15454 29641 43874
Density 0.0750 0.0541 0.0488 0.0418

The density for LIBs was similar across time intervals despite the
increasing number of nodes, indicating that the information flow across
knowledge areas is more flexible (Meagher and Rogers, 2004). This also
suggests that LIBs represent a more mature technology, in which the
degree of knowledge interconnectivity is more critical (Placke et al.,
2017). As the development of LSSB is pulled by mobility applications
and pushed by large research consortia, the knowledge integration and
cross-linking of adjacent technological competencies will remain crucial
for their successful uptake. Simultaneously, this growing complexity
might cause coordination problems and require appropriate policy
measures for shortening the time needed to bring solid-state batteries to
market.

Next, a network centrality analysis identified the most influential
classification codes in the network. The intervals were aggregated to
provide a comprehensive view. The parameters calculated at the node
level are called centrality scores, which are measures of a node’s
importance in the network. A brief overview of the most influential
codes is given in Table 7. The centrality scores are sorted by eigenvector
centrality. Each centrality score measures a node’s importance from
each different perspective and helps determine its characteristic role.

We observed that the different centrality measures strongly correlate
with each other and thus rank classification codes in a similar manner
with a few exceptional cases. Classification codes that have high global
importance also play a brokering role in connecting otherwise distinct
groups of knowledge areas. As could be expected, the two top-ranked
codes are “L0O3-E01C3” (Solid electrolytes) and “X16-BO1F1C”
(Lithium-based solid electrolyte). Similar to the observed values in
Fig. 6, the application field of “vehicles” had a strong influence on the
overall interaction dynamics. Moreover, as solid electrolytes act as a
mixed form of electrolyte and separator, there are a substantial number
of classification codes related to solid—solid interfaces (Tateyama et al.,
2019). The fact that the eigenvector centrality values lie close to each
other indicates that the delineated codes in Table 7 are prominent and
are mutually well-connected.

When comparing the most influential codes of LSSBs with those of
LIBs in Table 8, it becomes evident that there is a similar composition of
dominant classification codes. This finding suggests that the advance-
ments of electrolytes and their application in the automobile industry
are driving the global R&D efforts. Moreover, the code “X16-B01F1”
(Secondary lithium cells) holds a critical position for knowledge diffu-
sion due to its relatively high betweenness centrality score.

4.3. Systematic insights into interaction dynamics

To capture the dynamic aspects of knowledge interactions, we
complemented the network visualization with an integrated procedure,
which suggests three new metrics. In particular, we focused on revealing
promising interaction pairs that showed persistent growth over time and
gained notable significance in the latest year of investigation. Subse-
quently, nine different co-occurrence matrices were constructed for each
time point and the corresponding metrics were calculated using Equa-
tions (4)-(7). As mentioned in Section 3.3, a threshold-value was
assigned to filter out only the emerging signals. In case of the growth
metric, the outcome must be a positive value. The persistence metric was
checked as being present if there was a consistent interaction pattern
from the year 2013-2018 (e.g. the last six years of the total study
period). The threshold for the novelty metric was set to 25%, implying
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Table 7
Selected summary of calculated network centrality metrics for LSSB (sorted by
eigenvector centrality).

Derwent Eigenvector Closeness Betweenness Rank
Manual Codes centrality centrality centrality
L03-E01C3 0.134 0.768 0.105 1
X16-BO1F1C 0.133 0.754 0.098 2
LO3-HO5 0.125 0.692 0.049 3
L03-E01B5B 0.124 0.693 0.050 4
LO3-E03 0.120 0.673 0.039 5
LO3-E01B 0.112 0.656 0.041 6
LO3-HO3A 0.111 0.636 0.023 7
X16-E01J 0.108 0.630 0.020 8
X21-BO1A 0.107 0.616 0.013 9
A12-E06A 0.106 0.622 0.017 10
X16-F02 0.106 0.630 0.024 11
LO3-E08B 0.105 0.620 0.016 12
LO3-E01C 0.104 0.626 0.028 13
X16-BO1F1 0.103 0.632 0.041 14
A12-E06 0.103 0.623 0.027 15
LO3-E01A 0.100 0.613 0.019 16
LO3-E08C 0.100 0.615 0.021 17
X21-A01F 0.096 0.594 0.009 18
LO3-E08 0.096 0.607 0.020 19
X16-J01 0.094 0.600 0.013 20
Table 8

Selected summary of calculated network centrality metrics for LIB (sorted by
eigenvector centrality).

Derwent Eigenvector Closeness Betweenness Rank
Manual Codes centrality centrality centrality

X16-B01F1 0.088 0.838 0.200 1
L03-HO5 0.084 0.724 0.056 2
L0O3-E01B5B 0.082 0.695 0.039 3
LO3-E03 0.078 0.649 0.020 4
LO3-E08B 0.078 0.651 0.020 5
A12-E06A 0.077 0.642 0.017 6
LO3-E08 0.077 0.651 0.024 7
LO3-E01A 0.076 0.636 0.017 8
LO3-E01C 0.075 0.630 0.018 9
L0O3-E01B3 0.075 0.633 0.014 10
X16-F02 0.075 0.635 0.019 11
L0O3-E01B 0.074 0.631 0.018 12
A12-E06 0.073 0.625 0.023 13
X16-E01J 0.073 0.617 0.010 14
X16-B01 0.073 0.643 0.046 15
LO3-HO3A 0.072 0.620 0.012 16
X21-BO1A 0.072 0.624 0.015 17
LO3-E08C 0.072 0.614 0.013 18
X16-E01G 0.071 0.621 0.016 19
X21-A01F 0.071 0.620 0.018 20

that at least 25% of the proportional interaction frequency must fall in
the year 2018. In this manner, more weight can be assigned to the latest
technology. Hence, interacting pairs with a high novelty score can be
interpreted as important contributors to subsequent technological
development patterns. In Table 9, the top 20 promising interacting pairs
are listed according to the calculated metrics. In total, there were 43883
distinct unique interactions. The interactions deserving specific atten-
tion were highlighted with a bluish background color. The most prom-
ising relationships were finally ranked by the growth metric.

Overall, the significance of solid electrolytes in the development of
LSSBs is confirmed by the fact that “L03-E01C3” (Solid electrolytes) and
“X16-B0O1F1C” (Lithium-based solid electrolyte) are involved in almost
every interaction. Achieving electrode-electrolyte interface stability on
solid-state batteries is a major challenge to enhance the cell performance
(Zahiri et al., 2021). Further advancements in electrolyte materials are
crucial because an uneven charge distribution at the interface of the
electrolyte and electrode can still cause lithium metal dendrite issues
(Cao et al., 2020). Moreover, their relationships to “X12-D01C” (Carbon,
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Table 9
Selected summary of calculated metrics for LSSBs (sorted by Growth).

Interacting pairs Growth Persistence Novelty [%]
L0O3-E01C3 X12-D01C 0.0692 Yes 29.17
X12-D01C X16-BO1F1C 0.0659 Yes 30.14
LO3-E03 X12-D01C 0.0527 Yes 32.20
X12-D01C X16-E01J 0.0494 Yes 37.68
L03-E01B5B X12-D01C 0.0461 Yes 37.85
E12-A L0O3-E01C3 0.0379 Yes 31.18
A12-E06B A12-M02 0.0297 Yes 27.97
E31-K07 X16-BO1F1C 0.0281 Yes 26.31
L0O3-E01B X16-E02 0.0264 Yes 26.83
E35L X16-BO1F1C 0.0264 Yes 28.39
A12-E06B A12-M01 0.0247 Yes 32.01
E31-K07 L0O3-E01B 0.0214 Yes 32.86
E35-V L0O3-E01C3 0.0165 Yes 34.59
A12-MO01 L0O3-E01B8 0.0165 Yes 28.58
E31-PO6E X16-BO1F1C 0.0157 Yes 30.48
E35-W X16-BO1F1C 0.0148 Yes 33.19
E35-W LO3-E01C3 0.0132 Yes 29.73
E33-G LO3-E01B 0.0132 Yes 28.40
E31-Q08 X16-BO1F1C 0.0132 Yes 30.61
LO3-E08 X16-E01C1 0.0124 Yes 25.05

silicon, or other nonmetallic material; conductive polymers) and
“E31-Q08” (Other Boron compound) point to the usage of chemical
compounds that are highly ionic conductive, chemically inert and me-
chanically robust to stabilize the electrode-electrolyte interphase. This
can enhance the performance as well as the lifetime of the battery
(Cheng et al., 2019; Song et al., 2016). On the other hand, their inter-
action with “E35-W” (Nickel (Ni) compound) could be indicative of the
interface problems between a solid electrolyte and a nickel containing
cathode, which also plays a crucial role in the performance of the battery
(Zahiri et al., 2021; Zhao et al., 2018). Furthermore, solid electrolyte
containing chemical compounds, such as “E35-L” (Zirconium (Zr),
hafnium (Hf) compound), could represent promising electrolyte mate-
rials as they help achieve a better compromise between ionic conduc-
tivity and stability (Murphy et al., 2020).

The calculated metrics for LIBs are shown in Table 10. From this
comparison, it is evident that these two distinct battery chemistries also
differed significantly in knowledge interaction patterns. While LSSBs
have a strong focus on understanding the impacts of solid electrolyte
interphase composition and stability, the R&D focus of LIBs lies pre-
dominantly on electrodes. This finding shows that both battery tech-
nologies have different key components to optimize and therefore have

Table 10
Selected summary of calculated metrics for LIBs (sorted by Growth).
Interacting pairs Growth Persistence Novelty
X16-E01C1 X16-E01J 0.0954 Yes 27.32
L03-E01B4 X16-E01C1 0.0485 Yes 25.91
A10-EO5B X16-E01J 0.0434 Yes 27.13
L03-A02G X16-BO1F1 0.0339 Yes 26.04
L03-A02G X16-E01J 0.025 Yes 25.64
A10-E05B X16-E01C1 0.024 Yes 28.14
X16-BO1F1C X16-E01J 0.0233 Yes 25.56
A12-EO6A X16-BO1F1C 0.0216 Yes 27.35
E35-V X16-E01C1 0.0157 Yes 27.93
E1l1-wW X16-BO1F1 0.0155 Yes 37.22
A12-MO02 X16-BO1F1C 0.0155 Yes 27.08
A04-DO5SA X16-BO1F1 0.0139 Yes 29.27
E05-U05C X16-BO1F1 0.0136 Yes 25.07
A12-E06B LO3-E01C3 0.013 Yes 27.34
E35-W X16-E01C1 0.0128 Yes 26.38
A12-W11 X16-BO1F1 0.0128 Yes 33.89
A04-E08 X16-BO1F1 0.0125 Yes 30.65
X16-BO1F1 X16-F 0.0123 Yes 52.84
Al12-W14 LO3-E01B3 0.0123 Yes 26.38
A04-DO5SA A12-EO6A 0.0118 Yes 27.22
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adopted distinct development trajectories. Moreover, the knowledge
areas of “E11-W” (Environmentally friendly inventions (compositions/
applications)) and “A12-W11” (Chemical engineering, pollution con-
trol) show that LIBs have a stronger engagement with the topic of sus-
tainability, which is particularly required in the electric vehicles
automotive industry. This might be because LIBs are a more mature
technology compared to LSSBs and try to foster incremental innovation
by converging with neighboring knowledge disciplines.

4.4. Distance analysis

The distance-based measure can help investigate whether specific
knowledge areas have become more similar over time. In this study, the
distance is calculated pairwise among all vector elements within the co-
occurrence matrix using the Tanimoto coefficient. By quantifying the
distance, it is possible to make further statements about the technolog-
ical environment and visually communicate the vacant technology
development opportunities. In general, the knowledge areas are
assumed to have a smaller distance when they are in similar environ-
ments and a larger distance when they are in dissimilar environments.
To provide an alternative view on analysis of technological development
trends, the distance values are computed using the top 50 most promi-
nent knowledge areas. The distances were calculated for three equally
spaced time intervals (2010-2012; 2013-2015; 2016-2018) to charac-
terize the dynamic pattern of knowledge relatedness. Based on the dy-
namic view of the distance measurement, the distance map for each time
interval was outlined in Figs. 11-13. In the heat map visualization, the
color intensity corresponds to the proximity or closeness of two
knowledge areas. The darker the color, the shorter the distance between
two areas. The probability of knowledge spillover can be assumed to be
higher when two distinct knowledge areas are closer to each other.

Closer inspection shows that the R&D focus has shifted gradually.
Although the overall proximity seems to have decreased over time, each
interval has its own characteristic features. For example, while the “X16-
F” (Constructional details of cells or batteries) had a relatively high
distance to other knowledge areas until the second interval, its prox-
imity to “L04-A01A” (Silicon) has decreased drastically in the last in-
terval. This reflects the current research on silicon anodes, which are
regarded as a promising material having a high volumetric energy
density and invulnerability to dendrite formation (Cangaz et al., 2020).
Another example is the decreased distance between “X16-E01C1”
(Electrode material -Oxides) and “X16-E01G” (Manufacturing of elec-
trode active material). This shift is in line with the observation that LSSB
production based on oxide solid electrolytes is regarded as a promising
candidate, and further studies in scaling-up their fabrication are deemed
necessary (Schnell et al., 2018, 2019). On the contrary, “L03-H03”
(Electric communications techniques) has increased its proximity to
most of its neighboring knowledge areas in the last interval. This might
be because recent research efforts are more geared towards application
in the automotive sector as sustainable transportation based on electric
vehicles has a high policy priority (Qiu et al., 2019).

Table 11 summarizes the interacting knowledge pairs that most
continuously decreased their distance over the examined intervals. The
decreased distance could indicate that there is a synergistic effect of
knowledge spillover between the interacting knowledge areas. Overall,
“X16-F” (Constructional details of cells or batteries) is present in almost
every interaction pair outlined in Table 11. The application of a solid-
state electrolyte that is roughly as conductive as a liquid but resists
dendrite formation can address a number of limitations inherent to
conventional LIBs. However, the R&D community has not yet found
suitable materials capable of meeting these requirements. Hence, many
classes of electrolyte/separator materials have been tested. This trend is
reflected in the extensive research efforts directed at finding a dendrite-
free design for solid-state batteries (Boaretto et al., 2021) The strongest
decline in distance occurred between “L04-A01A” and “X16-F”, followed
by “X16-E01C”, “W01-C01D3C” (Portable; hand-held mobile phone)
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Fig. 11. Distance map among the top 50 most occurring knowledge areas. (Interval 2010-2012).

and “X21-A01D” (Hybrid vehicle). These findings could indicate the
expansion of LSSBs adaptability to power portable electronic devices.
Hence, it is necessary to cross the traditional knowledge boundaries to
accelerate the commercial breakthrough of LSSBs and engage in value
chain coordination at an early stage.

In the case of LIBs, a different interaction trend was observed (Note:
The corresponding figures and values can be found in Appendix A-2, A-
3, A-4 and A-5.). For example, the distance between “A10-E05B”
(Chemical modification by carbonization) and “X16-E01C” (Electrode
material - Oxides) has reduced the most. This interaction might show the
recent research efforts to develop porous carbon membranes that can be
integrated into high-value electrode materials without severe volume
expansion during intercalation (W. Shen et al., 2019). Moreover,
“L03-HO3A” (Data storage units, computers) and “L03-H05” (Vehicles)
have also significantly reduced their distances. This further supports the
findings from the previous sections that vehicles and large-scale energy
storage systems are the main application fields of LIBs and drive their
technological advancements. On the contrary, “X16-J” (Electrolytes) has
increased its distance to most of its interacting neighbors, thereby being
less significant for the innovation of LIBs. This further strengthens the
growing importance of solid-state electrolytes and batteries in changing
the battery production landscape (Wang et al., 2021).

5. Conclusion

As our society moves towards a low-carbon economy, secure and
high-performing energy storage systems become more important for

13

meeting the increasing demands from large-scale application markets
and decarbonizing the electricity supply. A rapid advancement in bat-
tery technology will play a major role not only in clean energy transi-
tions but also in accelerating EV deployment. Although the currently
commercialized LIBs have allowed EVs to enter the market, LSSB tech-
nologies show great promise in accelerating the transition to electric
mobility (Albertus et al., 2021). Despite the significance of this issue,
there has been no research systematically investigating the underlying
technological development trajectory of LSSB and the proximity be-
tween interacting knowledge areas. This study analyzed and highlighted
the patent landscape of LSSBs and compared their technology profile
against that of LIBs by proposing a novel analysis framework. After
reviewing the descriptive statistics of the collected patent data, a
modified co-classification approach was applied to quantify knowledge
interactions and detect emerging interaction trends by quantifying sig-
nificant changes in interaction rates. In particular, three novel metrics
were introduced with the aim of highlighting promising relations that
might serve as innovation drivers. Furthermore, this study introduced a
distance map, which visualizes the relatedness of knowledge areas. By
comparing the technology development of LSSBs with LIBs, this study
was able to reveal their distinct development paths and driving forces.
Hence, the proposed approach can further contribute to enhanced policy
planning and help R&D managers optimize their portfolio mix through
an increased awareness of patent intelligence. The main line of this
research is based on the provision of combined static and dynamic
perspectives to investigate the technological development trends in
solid-state battery research. In particular, this research extended 1) the
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Fig. 12. Distance map among the top 50 most occurring knowledge areas. (Interval 2013-2015).

conventional co-occurrence approach by introducing new quantifiable
metrics for assessing interaction dynamics and 2) revealed the useful-
ness of including indirect interactions by adopting distance-based
measurements. The following paragraph pinpoints the individual con-
tributions in more detail. This study is characterized by following
theoretical and managerial contributions.

With regard to its theoretical contributions, this study extends the
currently available methods for patent analysis by introducing a novel
framework. The novel analysis framework combines several data-driven
analytical methods to transform complex patent data into high value
map representations. Thus, the ongoing advancements of considered
battery technologies can be comprehensively quantified and visualized.
Secondly, we responded to the call for the development of a dynamic
perspective to detect relationships that could become more relevant in
the future by introducing novel metrics (Feng et al., 2020). The intro-
duced metrics allowed evaluation of knowledge interactions according
to emerging trend characteristics, whereby a threshold value can be set
to filter out the most relevant interactions. These metrics can help
strengthen the interpretability of emerging interactions. Moreover, this
study was able to broaden the view of emerging trends between
knowledge areas of LSSBs and LIBs by considering both direct and in-
direct interaction dynamics. The distance measurement can provide an
alternative quantifiable perspective on how to shape the ecosystem
structure based on data-driven insights. Lastly, this study extended the
limited literature on the analysis of next-generation energy storage
system based on patent mining.

In terms of managerial implications, this work contributed to
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promoting the overall transparency of the technological landscape of
battery research. The insights derived from this study can become a
valuable point of reference for R&D managers and policy makers
designing competitive strategic initiatives to help accelerate the transi-
tion of solid-state batteries from the lab to the market, and link different
industrial disciplines to maximize cross-sectoral learning. Simulta-
neously, research scientists can use the distance map as a guideline to
coordinate their research efforts and patenting behavior.

Despite its contributions, this study is not without limitations. First,
the findings should be interpreted with caution, as they are largely
dependent on the scope and depth provided by the patent data used.
Hence, this study should be viewed as a complement to previous qual-
itative analyses to support the decision making of research scientists and
R&D managers. To remedy this, future research could combine addi-
tional industry data sources to gain a more comprehensive picture of the
technological landscape. Second, the robustness of the newly proposed
metrics should be tested using additional case data. To validate its
usefulness, the proposed framework can be applied to non-lithium based
or non-electrical energy storage systems. Third, the changing knowledge
dynamics could be captured along and across battery value chain steps
to monitor potential shifts in value creation activities. Hence, systems
thinking in value chain might lead to improved outcomes and help judge
the strengths, opportunities, challenges and risks presented in a
collaborative research environment. Moreover, this study made use of
data derived from a commercial database, which is not publicly acces-
sible. This could make the replication of the data creation step difficult.
Furthermore, the collected data might not fully reflect the patent
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Table 11
Top 20 continuously distance-decreasing knowledge interaction pairs (LSSBs).

Interacting knowledge pairs Amount of change in distance

L04-A01A X16-F —0.653
W04-M01P5 WO01-C01D3C —0.600
X16-F X16-E01C —0.539
X16-F WO01-C01D3C —0.523
X21-A01D X16-F —0.522
X16-F L03-A02B —0.509
X16-F X16-E01 —0.507
X16-F L03-A02C —0.504
E31-K07 X16-F —0.501
X16-E X16-F —0.495
A12-E06 X16-F —0.491
L03-A02D X16-F —0.481
W01-C01D3C E31-K07 —0.477
A12-E06 A12-MO1 —0.475
LO3-E08C A12-M02 —0.467
W04-M01P5 X16-F —0.466
X16-E02 X16-F —0.457
WO04-M01P5 T01-JO7D1 —0.454
X16-F LO3-E08 —0.447
A12-E06 X16-F —0.446

landscape of examined technologies due to the chosen search strategy.
Hence, the search strategy could be extended by assigning keywords for
a more precise definition of the technology domains (Moehrle and
Caferoglu, 2019). The search for appropriate keywords can be accom-
panied by a manual review of the patents to ensure that novel technical
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among the top 50 most occurring knowledge areas. (Interval 2016-2018).

terms are included. To get a more comprehensive view of the techno-
logical landscape, the original input data could be extended with pub-
lications data. However, this step requires an in-depth understanding on
how to merge those two different data sets as publication data do not
come with a hierarchical classification scheme. Lastly, future research
could consider integrating text mining to extend the research toolkit as
well as to uncover the primary topics related to selected technology
components from the claims of the patents.
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Appendix

Appendix A-1
Network properties of LIB over time.

Interval 1 Interval 2 Interval 3 All intervals
Number of interacting nodes 3201 3551 4048 5567
Number of edges 124554 160921 203238 337778
Density 0.0240 0.0260 0.0250 0.0220
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17



A. Block and C.H. Song Journal of Cleaner Production 353 (2022) 131689

X16-B01F1
LO3-E01858
LO3-H05
L03-E088
LO3-E0183
L03-E03
X16-€010
A12-E06A
X16-E01G
X21-B01A
L03-A028
LO3-E01A
X16-E01C1
LO3-E01C
X16-F02
LO3-E08
LO3-E01B
X16-801
X21-A01D
X21-A0F
X16-£01C
LO3-HO3A
X16-E02
LO3-E06C
L03-E0184
A12-E068
L03-E0188
A12-E06
Lo3-ED1C2
LO3-E01C3
X16-B01F1C
WO1.CO1D3C
A10-€058
X16-F06A
X164
X16-E01
LO4-ADTA
X16-F01
To1-J07D1
X16-E
X16-801F
LO3-E01D6
X16-FO1C
LO3-E01DS
LO3-A02D
ADS-S02
X16-G
LO3-E0ICY
TO1-MOGAT
LO3-E01DY

07s

045

015

CB8EEB 228 0 2R g Ra000P R R R 828888088
HEH I T AL

gedy R EF L TR LEEER L s kzki 23¢ 3
£g 98 x<kN88p8¥TEXRRLE* 981y Sgé"é’«x *3*p xgkg8s® 3538

Appendix A-4. Distance map among the top 50 most occurring knowledge areas for LIBs. (Interval 2016-2018).

Appendix A-5
Top 20 continuously distance-decreasing knowledge interaction pairs (LIBs).
Interacting knowledge pairs Amount of change in distance
A10-EO5B X16-E01C —0.496
LO3-HO5 X16-E01J —0.433
L03-A02B LO3-HO5 —0.402
LO3-HO5 LO3-E01B3 —0.393
TO1-MO6A1 WO01-C01D3C -0.377
LO3-HO3A X16-BO1F1C -0.371
LO3-HO3A L04-A01A —0.368
X16-G WO01-C01D3C —0.357
L03-A02D LO3-HO3A —0.352
LO3-HO3A A08-S02 —0.352
LO3-E08C A08-S02 —0.346
X16-E02 A10-EO5B —0.344
X21-A01D L04-A01A —0.337
X16-E01C1 LO3-HO5 —0.336
X21-A01F X16-BO1F1C —0.333
X16-BO1F1C X21-A01D —0.331
X21-A01D L03-A02D —0.318
L03-A02D LO3-E08C —-0.317
X16-E01G LO3-HO5 —0.316
LO3-E01C A10-EO5B —-0.311
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